((10x+5)/(x^2-2x-15))*((x^2-x-6)/(6x+3))

Simple and best practice solution for ((10x+5)/(x^2-2x-15))*((x^2-x-6)/(6x+3)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((10x+5)/(x^2-2x-15))*((x^2-x-6)/(6x+3)) equation:


D( x )

6*x+3 = 0

x^2-(2*x)-15 = 0

6*x+3 = 0

6*x+3 = 0

6*x+3 = 0 // - 3

6*x = -3 // : 6

x = -3/6

x = -1/2

x^2-(2*x)-15 = 0

x^2-(2*x)-15 = 0

x^2-2*x-15 = 0

x^2-2*x-15 = 0

DELTA = (-2)^2-(-15*1*4)

DELTA = 64

DELTA > 0

x = (64^(1/2)+2)/(1*2) or x = (2-64^(1/2))/(1*2)

x = 5 or x = -3

x in (-oo:-3) U (-3:-1/2) U (-1/2:5) U (5:+oo)

((10*x+5)/(x^2-(2*x)-15))*((x^2-x-6)/(6*x+3)) = 0

((10*x+5)/(x^2-2*x-15))*((x^2-x-6)/(6*x+3)) = 0

((10*x+5)*(x^2-x-6))/((x^2-2*x-15)*(6*x+3)) = 0

x^2-2*x-15 = 0

x^2-2*x-15 = 0

DELTA = (-2)^2-(-15*1*4)

DELTA = 64

DELTA > 0

x = (64^(1/2)+2)/(1*2) or x = (2-64^(1/2))/(1*2)

x = 5 or x = -3

(x+3)*(x-5) = 0

x^2-x-6 = 0

x^2-x-6 = 0

DELTA = (-1)^2-(-6*1*4)

DELTA = 25

DELTA > 0

x = (25^(1/2)+1)/(1*2) or x = (1-25^(1/2))/(1*2)

x = 3 or x = -2

(x+2)*(x-3) = 0

((10*x+5)*(x+2)*(x-3))/((x+3)*(x-5)*(6*x+3)) = 0

( 10*x+5 )

10*x+5 = 0 // - 5

10*x = -5 // : 10

x = -5/10

x = -1/2

( x+2 )

x+2 = 0 // - 2

x = -2

( x-3 )

x-3 = 0 // + 3

x = 3

x in { -1/2}

x in { -2, 3 }

See similar equations:

| 3/(x+5)+2/(2x+4)=4/(x-2) | | 2+4(4x-5)=7-3(2x-1) | | x^2-x-22=8 | | (4x-6)(5x+7)=0 | | 2A-7B-9C-8D+9E+4F+6G=8 | | 2/2x^2+3x-8 | | 22/40=14/x | | 22/40=11/x | | x-20=-3 | | 2x^2-7=23 | | 22/40=16/x | | 3(x+1)-2=5x-2(2+x) | | x+20=30 | | 22/40=18/x | | k^4+11k^2+30= | | 5x^2-7=73 | | 5.95*12= | | -3y-18=5+14 | | 3x^2+2x=165 | | 22/40=22/x | | 7q-4=17 | | 9(y-4)/2=-4y | | (x-1)(x-3)=166 | | 15%x=141 | | (3x+5)(4x-8)=0 | | 4b+6=14 | | 1/2x+3=125 | | g/2+5=12 | | x^6+3=4 | | -115+9x=x+61 | | 2x+7y=-6 | | (2x+9)(3x-9)=0 |

Equations solver categories